The Devil is in the Fitting Details

Why all NAL (or DSL) targets are not created equal

Mona Dworsack-Dodge, Au.D.
Senior Audiologist - Otometrics, DK
August, 2012
Audiology Online 2006

What they share in common...

• Evidence based prescriptions with a host of literature validating them as tools for best practice
• Use of speech-like signals as stimulus of choice
• Differing targets for soft, average, and loud inputs
• Provide a consistent fitting approach regardless of make, model, manufacturer of device

NAL-NL2

• PREMISE: Loudness EQUALIZATION
 — Aims to equalize perception of loudness over a range of frequencies instead of having low frequencies dominate loudness
 — maximizing predicted speech intelligibility while constraining loudness
• EVOLUTION:
 — From LINEAR approach to COMPRESSION approach.
 — From INSERTION-GAIN (tones) to include AIDED Gain (speech) targets
• VALIDATION/EVIDENCE: modifications from NAL-NL1 included patient preference/comfort findings

Johnson, E. and Dillon, H., 2011
Desired Sensation Level Multistage Input/Output (DSL m[i/o])- DSL v5.0

- **PREMISE:** Loudness NORMALIZATION
 - Aims to restore, at each frequency loudness perception of the hearing impaired listener to that of a normal hearing listener
 - Goals of avoiding loudness discomfort, providing audibility of speech across a wide range of input levels, and accommodating the prescriptive targets for both quiet and noisy environments, as well as for infants versus children versus adults

- **EVOLUTION:**
 - **From pediatric-focus (earlier versions) to both pediatric and adult versions.**
 - **Modifications for ‘noise programs’ made.**
 - Correlates with data on Preferred Listening Levels (PLL)

Johnson, E. and Dillon, H., 2011

Where are they now?
Soft (55dB) input

- Purple = DSL5 (Adult)
- Orange = NAL-NL2 (Adult)

Where are they now?
Average (65) input

- Blue = DSL5 (Adult)
- Green = NAL-NL2 (Adult)
Aided Response - Average Speech

INTER-SYSTEM DEVIATIONS

Whose NAL-NL fitting method are you using?
By Todd L. Ricketts and H.G. Curran Mueller

(2009).

Five factors which can affect accuracy of the verification process

- Target adjustments for the hearing aid/fitting type
- Conversions used to display hearing loss and targets in ear canal SPL
- Hearing aid-specific interactions with the measurement signal
- The level and shape of the input signal
- The analysis of the measured signal

Inter-system deviations

- Compared NAL-NL1 targets for open and occluded fittings across 3 verification systems, using “system defaults.”
- Randomly select one of the systems to fit to target and then measure (without adjustments) on the other two systems, and repeated cycle with the other two systems as “baseline.”
- Calculated a deviation from NAL-NL1 targets for each system.
- Found results on Verifit and MedRX systems to be similar, but the Fonix system resulted in a desired fitting that was approximately 3-4 dB lower in the low frequencies, and up to 8-10 dB higher in the high frequencies.

Figure 2. The average inter-system deviation from NAL-NL1 targets across three probe-microphone systems for one closed-fit instrument. All values were calculated as described in figure 1.

Five factors which can affect accuracy of the verification process

- Target adjustments for the hearing aid/fitting type
- Conversions used to display hearing loss and targets in ear canal SPL
- Hearing aid-specific interactions with the measurement signal
- The level and shape of the input signal
- The analysis of the measured signal

Figure 3. The average intercept deviation from NAL-NAL targets across three test probe-microphone systems for two hearing aids set to different types of amplitude processing. All values were calculated as described in Figure 1.

NAL
The only mandatory inputs from the user are the air conduction hearing thresholds at 500 Hz and 2 kHz.
Why does venting not appear to influence Real Ear SPL targets?

Taken from the NAL-NL2 Algorithm implementation documentation
Why does venting not appear to influence Real Ear SPL targets?

“There is no reason why changing the size of the venting should change the ear canal SPL that is optimal for a person at any frequency.”

Summary of variables and their effect

<table>
<thead>
<tr>
<th>Variable</th>
<th>Frequency</th>
<th>Range of options on PMM systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taken from the NAL-NL2 Algorithm implementation documentation.
Range of options on PMM systems
CONVERSION FACTORS

NAL-Potential sources of inter-system variance
- Defaults assumed by each system may vary
- HL to SPL conversions (RECD, REUG, REDD) for each system may vary
- Transducer selection may not be aligned

REDD Headphone
REDD Headphone

HL to SPL Conversion in AURICAL

• In correspondence with the transducer selection, the RECD, REUG and any parameter impacting their calculation influences the HL/SPL conversion. 3 basic formulas apply (ANSI 3.6:2004):

For HL to SPL (real ear)

• For inserts: Threshold [dB SPL] = Threshold [dB HL] + Applied RECD (mold or tip) + Insert phone RETSPL (HA1 or HA2)
• For sound field: Threshold [dB SPL] = Threshold [dB HL] + Applied REUG (0, 45, or 90 degree) + Sound field RETSPL (0, 45, or 90 degree)
• For headphones: Threshold [dB SPL] = Threshold [dB HL] + real ear-to-6cc transform + RETSPL
• (For SPL to HL, the above formulas apply in reverse.)
For SPL (real ear) to SPL (2cc)

• Threshold [dB SPL 2cc] = Threshold [dB SPL real ear] - Applied RECD

SIGNALS AND TARGETS

NAL-Potential sources of inter-system variance

• NAL doesn’t provide REAR or coupler SPL targets
 – Derived by adding the AG to the input signal
 – Customized REAR/ Coupler SPL targets may differ amongst systems
 • E.G. Otosuite applies the known signal spectrum in order to achieve appropriately differing output targets for various signals
NAL-Potential sources of inter-system variance

- Bilateral/Unilateral settings may not be aligned
- Experience settings may not be aligned
- Proprietary Coupler Output for Flat Insertion Gain (CORFIG) Hawkins D, Cook J. Hearing aid software predictive gain values: how accurate are they? Hear Jour. 2003;56(7):26-34.

DSL

The Desired Sensation Level (DSL) Method Version 5: DSL®m[i/o]
DSL v5.0b m[i/o] - Required Inputs

- Age
- Client Type
- Transducer
- Audiogram including BC
- LDL/UCLs
- Handling of ABR
- REUG and measurement conditions
- RECD and measurement conditions
- Linear vs. WDRC
- Hi Style
- Monaural/Binaural
- # Channels
- Vent Size
- Signal type and multi-level
- Quiet vs Noise program
What influence does venting have for DSL?

What about HI Type?
Range of options on PMM systems

Audiometry

- Ear: Left
- Targets: DSL adult
- Age: Adult
- Transducer: Insert+Foam
- Threshold: Entered
- Bone conduction: N/A
- UCL: Average
- RECD: Average
- Binaural: No

Cancel Continue Help

Range of options on PMM systems
Range of options on PMM systems

DSL-Potential sources of inter-system variance
- Defaults assumed by each system may vary
- HL to SPL conversions (RECD, REUG, REDD) for each system may vary
- UCL applied by each system may vary
- Transducer selection may not be aligned
- Bilateral/Unilateral settings may not be aligned
- Experience settings may not be aligned
- Quiet versus noise targets may not be aligned
- Proprietary Coupler Output for Flat Insertion Gain (CDRFIG)

Hawkins D, Cokk J. Hearing aid software predictive gain values: how accurate are they? Hear Jour. 2003;56(7):26-34.

DSL-Potential sources of inter-system variance- signals
- DSL provides SPL targets but varies them by type; speech, speech noise, pure tone
- Signals may be classified differently across systems
- DSL provides customized targets when the signals spectrum is provided to the algorithm
 - E.G. Otosuite feeds all available signal spectra to derive custom targets
So why the difference in targets shown in the fitting software and the PMM system?
Primary sources of difference between fitting and verification software

- Mismatch in understanding of what it means to fit to a prescriptive target versus selecting a prescription as the applied algorithm
- Mismatched signal types
- Mismatched versions of prescriptive target
- Mismatch in use of predicted versus measured REUG or RECD
- Mismatch in Binaural vs Monaural fitting selection
- Mismatch between Adult vs Pediatric or experience type

What can I do about it

- Familiarize yourself with the prescription you are applying to your fittings
- Check the settings in your PMM system and fitting software when you see a mismatch
- Consult reference manuals and clinical support from both

Mama didn’t get the fitting details right on this hat quite right!
QUESTIONS???

What impact do some of the various settings have on the prescription?
So do I have to make selections in Fitting Details???
Why does the target sometimes fall at or below the clients hearing threshold levels?

- Restoration of LTASS audibility of high frequencies is not always desirable
- In the case of NL2, the effective audibility factor it applies assumes that as hearing loss becomes more severe less information can be extracted from the speech signal
- Prescribed insertion gain may not aim to achieve audibility at higher frequencies

Keidser et al, 2011

Average speech target sloping hearing loss

Blue = DSL5 (Adult)
Green = NAL-NL2 (Adult)
Soft speech target and aided response for mild hearing loss

Thank you!!!