

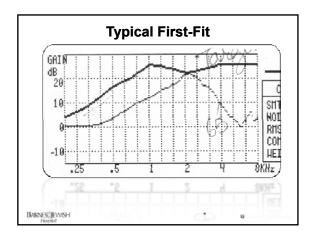
Outline

- Introduction to the use of REM by audiologists
- Example of first-fit versus programmed
- Factors to be discussed:
 - REIG using average versus measured REUG
 - Correcting for bilateral fit

BARNES JEWISH

- Correcting for the number of channels of signal processing
- Average versus measured REDD and impact on REAR measures

.


10

Kirkwood Hear J (2010) "How often do you do REM?										
	0%	Occasionally			Most of Time	Almost Always				
Audiologist	29.9	19.5	13.2	7.1	11.5	19.2				
HIS	27.0	21.1	8.9	8.9	13.0	21.1				
BARNES JEWISH		dight N			12	ni, na na Tridana				

Mueller and Picou Hear J (2010)										
"How often do you do REM? Seldom or Sometimes 50% Usually Never Sometimes 50% Usually										
Audiologist and HIS	34%	18%	6%	12%	30%					
BARNES JEWISS-1	elittel		0							

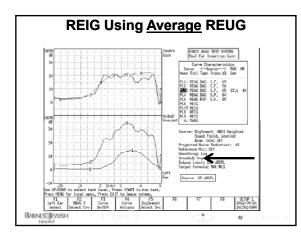
Aazh et al 2012 "The Accuracy of Matching Target Insertion Gain with Open-Fit Hearing Aids" N = 51 fittings 71% of initial fits failed to be within 10 dB of NAL-NL1 at one or more 7 discrete frequencies between 250-4000 Hz. 10 dB is a rather liberal margin for a "acceptable" fit. After modification and verification using REM, 18% failed to be within 10 dB of target in one or more frequencies between 250-

- 4000 Hz. Several studies (Swan and Gatehouse, 1995; Harrowven, 1998; Norman and James, 2000; Hawkins and Cook, 2003; Aarts and
- Caffee, 2005; Aazh and Moore, 2007) reported similar findings. However, the results from these and other studies as well as two national guidelines (ASHA, 1998; AAA, 2006) have failed to convince most audiologists to routinely use $\ensuremath{\mathsf{REM}}$ to verify the fitting of hearing aids. BARNES JEWISH .

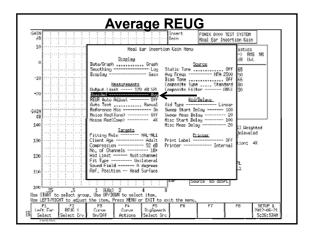
83.

83

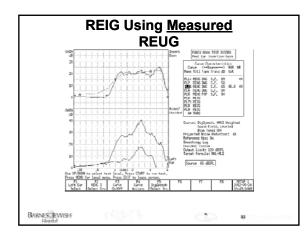
But, for the 20-30% who routinely perform REM's, you might not be aware of.....

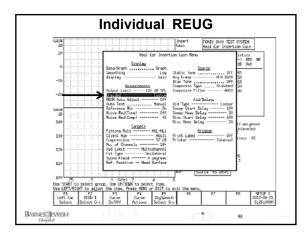

> Mueller and Picou (2010) Hear J 63(5)27-28,30,32

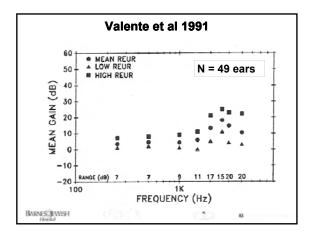
BARNES JEWISH

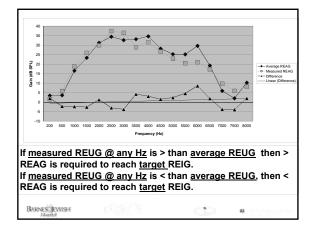

BARNES JEWISH

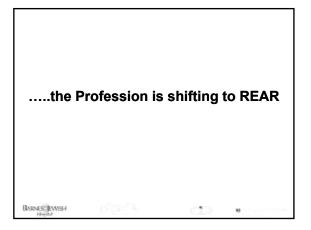
78% use REAR; 22% use REIG, while some use both.


91% of audiologists using REIG use measured REUG









1. Audiology is shifting from REIG to REAR because of the popularity of Verifit and Live Speech Mapping (LSM). Also, REAR measures intuitively make great sense. 2. REAR measures can be SPL-O-Gram or LSM "formats."

3. In my opinion, SPL-O-Gram is a <u>verification</u> tool; LSM is a <u>counseling</u> tool (no standardized signal or input level; no validated target of measured SL).

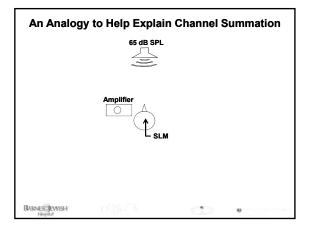
4. SPL-O-Gram uses DSL v5 or NAL-NL1(2) targets for single (linear) or multiple (nonlinear) input levels.

5. Both methods use the DR (in dB SPL) as the target. The DR, however, in both methods is typically predicted based on <u>average transformations</u> after entering the audiogram.

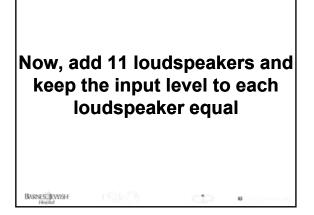
6. Whether one uses REIG or REAR there are errors many may not be aware of.

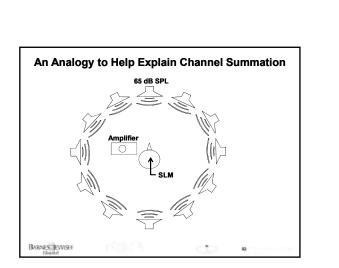
.

*

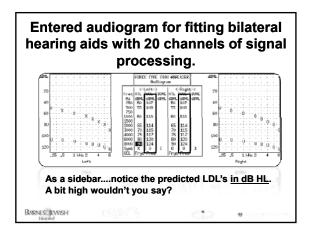

12

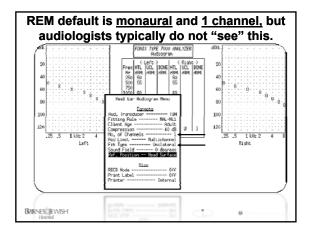
83

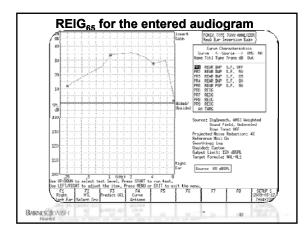

BARNES JEWISH

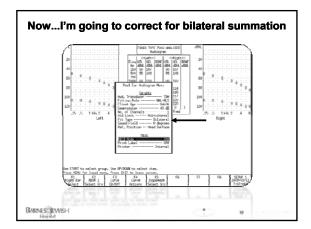

BARNES JEWISH

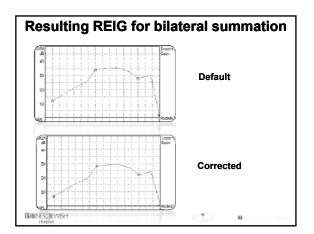
.....failure to correct for bilateral and channel summation

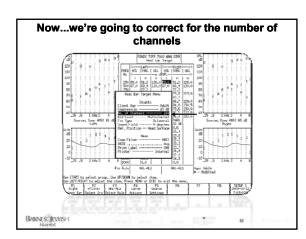


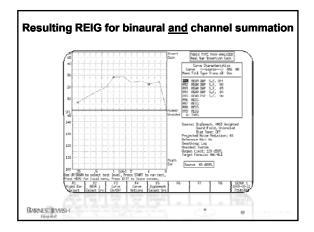


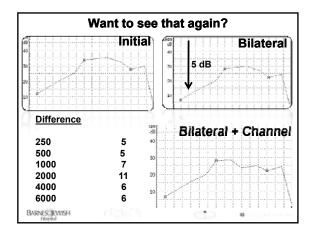


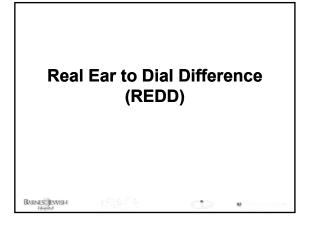






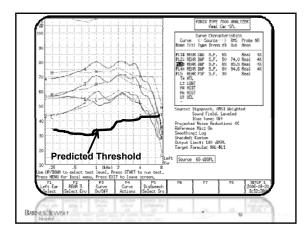




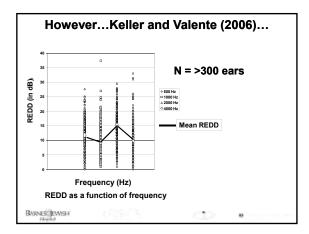


.....third error when doing REAR Measures

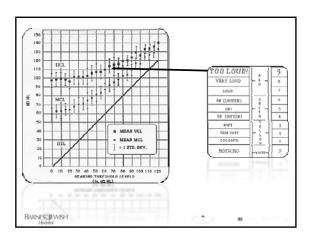
.


83

BARNES JEWISH

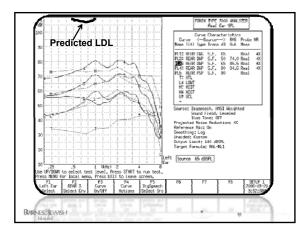


When c	•	ing REAF		s you may
softwa (SPL) ł	re will co by <u>adding</u> 989 to ca	nvert the the <u>aver</u>	<u>age</u> REDD fi	B HL) to dB
	250	19	3000	15.5
	500	12	4000	13
	1000	9	6000	13
	2000	15	8000	14
BARNES JEWISH			Ð	R

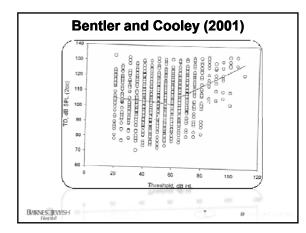


Next....with the same stroke of the keyboard, the software will <u>predict</u> the LDL in dB HL from Pascoe (1988) and add the <u>average</u> REDD to convert the LDL from dB HL to LDL in dB SPL

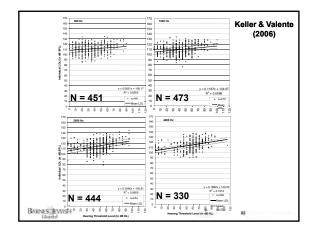
Fry	e 6500, 70)00 ai	nd 8	000			
RED	D		LDL				
FREQ (Hz)	dB	HTL dBHL	UCL HL	HTL dBHL	UCL HL		
250	19.0	0	97	65	114		
500	12.0	5	99	70	115		
750	10.5	10	99 98	75 80	117		
1000	9.0	20	98	85	120 120		
1500	12.0	25	101	90	124		
2000	15.0	30	102	95	130		
		35	101	100	127		
3000	15.5	40	103	105	133		
4000	13.0	45	105	110	134		
6000	13.0	50	107	115	137		
8000	14.0	55	108	120	140		
8000	14.0	60	110				
BARNES JEWISH Hoginal	Old M	¢		R			

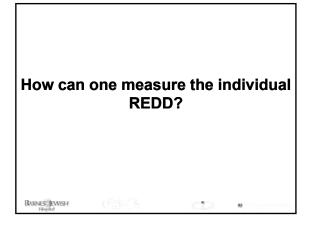


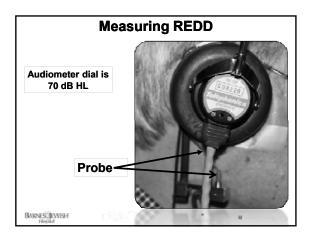
HL	250	500	1000	1500	2000	3000	4000	6000	8000	Pascoe (1988)		oe (1988)
0	116	109	106	109	112	113	110	110	111	97		L to LDL
5	118	111	108	111	114	115	112	112	113	99	(last c	olumn to
10	118	111	108	111	114	115	112	112	113	99	right)	
15	117	110	107	110	113	114	111	111	112	98		
20	116	109	106	109	112	113	110	110	111	97	2. HL to	SPL
25	120	113	110	113	116	117	114	114	115	101	conv	ersion
30	121	114	111	114	117	118	115	115	116	102	(ANSI	S3.6-1989
35	120	113	110	113	116	117	114	114	115	101		G-1) in
40	122	115	112	115	118	119	116	116	117	103		
45	124	117	114	117	120	121	118	118	119	105	each	,
50	126	119	116	119	122	123	120	120	121	107		
55	127	120	117	120	123	124	121	121	122	108	250	19
60	129	122	119	122	125	126	123	123	124	110	500	12
65	133	126	123	126	129	130	127	127	128	114	1000	9
70	134	127	124	127	130	131	128	128	129	115	1500	12
75	136	129	126	129	132	133	130	130	131	117	2000	15
80	139	132	129	132	135	136	133	133	134	120	3000	15.5
85	139	132	129	132	135	136	133	133	134	120	4000	13
90	143	136	133	136	139	140	137	137	138	124		
95	149	142	139	142	145	146	143	143	144	130	6000	13
100	146	139	136	139	142	143	140	140	141	127	8000	14
105	152	145	142	145	148	149	146	146	147	133	======	
110	153	146	143	146	149	150	147	147	148	134		
115	156	149	146	149	152	153	150	150	151	137		
120	159	152	149	152	155	156	153	153	154	140	13	

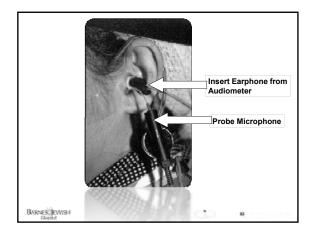


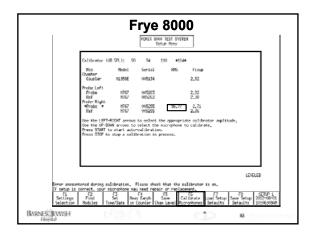
	0 5 10 15 20 25 30 35 40	85 86 87 89 90 91 92	90 91 92 94 95 96	90 91 93 94 95	90 92 93	87 89 90	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	5 10 15 20 25 30 35	86 87 89 90 91 92	91 92 94 95	91 93 94	92 93	89	
10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 15 20 25 30 35	87 89 90 91 92	92 94 95	93 94	93		
10 10 10 10 10 10 10 10 10 10 10 10 10 1	15 20 25 30 35	89 90 91 92	94 95	94			
2 2 3 3 4 4 4	20 25 30 35	90 91 92	95		94	91	
3 3 4 4	30 35	92	96		96	92	
3 3 4 4	30 35			97	97	83	
4			98	98	99	95	
4	01	94	99	100	100	98	
		95	101	101	101	97	
	45	96	102	103	103	98	
	50	97	103	101	104	- 99	
5	55	9.9	105	106	105	101	
6	30	100	106	108	107	102	1
6	55	103	110	110	1(9	105	1
-	10	107	113	113	112	107	1
		133	126	123	129	127	Frye Values
0	90	114	120	118	117	112	1
	55	118	123	121	120	115	
	90	121	126	123	122	117	
	35	125	130	126	1.25	120	
	00	128	133	129	127	122	
	15	132	136	131	130	125	1
	10	135	1.40	134	1.33	1.27	
	5	139	2.43	136	135	1.30	1
N N	9	145	246	1.39	1.38	132	ł.
	-						

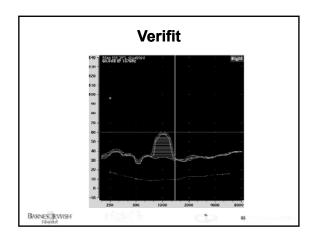


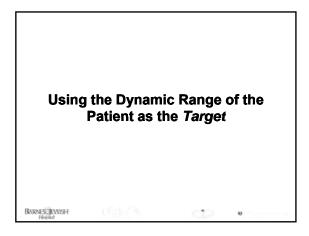


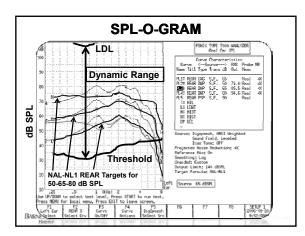


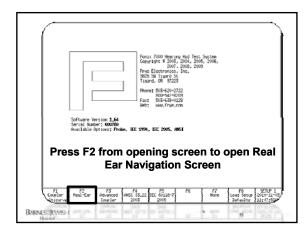


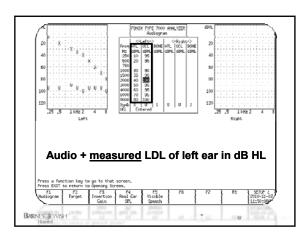


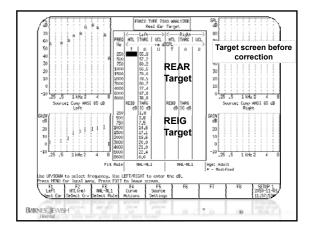


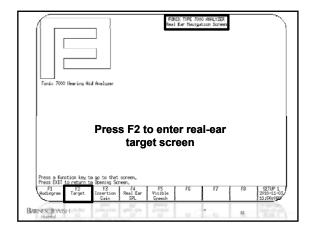





						in SPL le Later)	
	RT HL		L REI	LT DD HL		L REDD	
500	70	78	8				
1000	70	82	12				
2000	70	87	17				
3000	70	80	10				
4000	70	76	6				
Add RED) to au	idio thre	shold to	convert t	o dB SP	L @ TM.	
ES JEWISH		$C_{i}^{\prime }[g]$	i i	1		ę	÷







Hz	dB HL	ANSI- S3.6 1989	Predicted Threshold (SPL)	My REDD	Diff	Measured Threshold (dB SPL)	Change SL of REAR
250	10	19	29	13	-6	23	+6
500	20	12	32	15	+3	35	-3
1000	30	9	39	12	+3	42	ş
2000	40	15	55	16	+1	56	-1
3000	50	15.5		12	-3.5		
4000	60	13	73	2	-11	62	-11
6000	70	13		10	-3		
8000	80	13	93	12	-1	92	+1

